## REVISION TEST SERIES

## C1--SET A

## Class 12 - Chemistry

Time Allowed: $\mathbf{1}$ hour and 30 minutes
Maximum Marks: 35

## SECTION A. Each Carries 1 mark

1. The following graph shows:

a) Depression in freezing point of the solvent
b) Osmotic pressure
c) Elevation in boiling point of the solvent
d) Relative lowering of vapour pressure
2. 15 g of a solute in 100 g of water makes a solution to freeze at $-1^{\circ} \mathrm{C} .30 \mathrm{~g}$ of a solute in 100 g of water will give a depression in f.pt. equal to:
a) $0.5^{\circ} \mathrm{C}$
b) $2^{\circ} \mathrm{C}$
c) $-2^{\circ} \mathrm{C}$
d) $1^{\circ} \mathrm{C}$
3. An unripe mango placed in a concentrated salt solution to prepare pickle, shrivels because:
a) it gains water due to endo osmosis
b) it gains water due to reverse osmosis
c) it loses water due to exo osmosis
d) it loses water due to reverse osmosis
4. Calculate partial pressure at which the solubility of oxygen gas in water at $20^{\circ} \mathrm{C}$ is $0.10 \mathrm{~g} / \mathrm{L}$. Assume the density of the solution is $1 \mathrm{~g} / \mathrm{mL}$. $\left(\mathrm{K}_{\mathrm{H}}=3.486 \times 10^{4}\right.$ bar $)$
a) 3.42 bar
b) 0.99 bar
c) 2.65 bar
d) 1.96 bar
5. Assertion (A): Increasing pressure on water decreases its freezing point.

Reason (R): The density of water is maximum at 273 K .
a) Both $A$ and $R$ are true and $R$ is the correct explanation of A .
b) Both $A$ and $R$ are true but $R$ is not the correct explanation of A.
c) A is true but $R$ is false.
d) A is false but R is true.
6. Assertion (A): $\Lambda_{m}$ for weak electrolytes shows a sharp increase when the electrolytic solution is diluted.

Reason (R): For weak electrolytes degree of dissociation increases with dilution of solution.
a) Both A and R are true and R is the correct explanation of A .
b) Both A and R are true but R is not the correct explanation of A.
c) A is true but $R$ is false.
d) A is false but R is true.
7. Consider the following cell reaction: $2 \mathrm{Fe}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \mathrm{E}^{0}=1.67 \mathrm{~V}$

At $\left[\mathrm{Fe}^{2+}\right]=10^{-3} \mathrm{M}, \mathrm{P}\left(\mathrm{O}_{2}\right)=0.1$ atm and $\mathrm{pH}=3$, the cell potential at $25^{\circ} \mathrm{C}$ is:
a) 1.87 V
b) 1.57 V
c) 1.47 V
d) 1.77 V
8. The standard Gibbs energy for the given cell reaction in $\mathrm{kJ} \mathrm{mol}^{-1}$ at 298 K is:
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}), \mathrm{E}^{\circ}=2 \mathrm{~V}$ at 298 K
(Faraday's constant, $\mathrm{F}=96000 \mathrm{C} \mathrm{mol}^{-1}$ )
a) 384
b) -192
c) 192
d) -384
9. The molar conductivity of $\mathrm{NaCl}, \mathrm{HCl}$ and $\mathrm{CH}_{3} \mathrm{COONa}$ at infinite dilution are $126.45,426.16$ and $91 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively. The molar conductivity of $\mathrm{CH}_{3} \mathrm{COOH}$ at infinite dilution is:
a) $698.28 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{1}$
b) $390.71 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{1}$
c) $201.28 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{1}$
d) $540.48 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{1}$

## SECTION B. Each carries 2 marks

10. What are the values of $\Delta H$ and $\Delta V$ for an ideal solution of two liquids?
11. Why is an increase in temperature observed on mixing chloroforms with acetone?
12. How much electricity in terms of Faradays is required to produce 20 g of calcium from molten $\mathrm{CaCl}_{2}$ ?

Derive an expression for the pH of electrolyte in the following half cell. $\mathrm{PtH}_{2}(1 \mathrm{~atm}) \mid \mathrm{H}^{+}(\mathrm{aq})$. The reduction potential is -0.30 V .
13. Calculate $E_{\text {cell }}$ for following:
$2 C r(s)+3 F e^{2+}(a q) \rightarrow 2 C r^{3+}(a q)+3 F e(s)$
$C r(s)\left|C r^{3+}(a q)(0.1 M)\right|\left|F e^{2+}(a q)(0.01 M)\right| F e(s)$
$E_{\left(C r^{3+} / C r\right)}^{\ominus}=-0.74 \mathrm{~V}$
$E_{\left(F e^{2+} / F e\right)}^{\ominus}=-0.44 \mathrm{~V}$

## SECTION C. Each carries 3 marks

14. What is the mole fraction of a solute, in 2.5 m aqueous solution?

OR
19.5 g of $\mathrm{CH}_{2} \mathrm{FCOOH}$ is dissolved in 500 g of water. The depression in the freezing point of water observed is $1.0^{\circ} \mathrm{C}$. Calculate the Van't Hoff factor and dissociation constant of fluoroacetic acid.
15. Silver is deposited on a metallic vessel by passing a current of 0.2 amps . for 3 hrs . Calculate the weight of silver deposited. (At mass of silver $=108 \mathrm{amu}, 1 \mathrm{~F}=96500 \mathrm{C}$ )
16. In the button cell widely used in watches and other devices the following reaction takes place:
$\mathrm{Zn}(\mathrm{s})+\mathrm{Ag}_{2} \mathrm{O}(s)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{Zn}^{2+}(a q)+2 \mathrm{Ag}(s)+2 \mathrm{OH}^{-}(a q)$
Determine $\Delta_{r} G^{(-)}$and $\mathrm{E}^{(-)}$for the reaction

Given $Z n \rightarrow Z n^{2+}+2 e^{-}, \mathrm{E}^{0}=0.76 \mathrm{~V}$
Given $A g \rightarrow A g^{+}+2 e^{-}, \mathrm{E}^{0}=0.344 \mathrm{~V}$

## SECTION D. Each carries 5 marks

17. a. Define the relationship between lowering of vapour pressure and mole fraction of the volatile liquid.
b. i. Benzoic acid completely dimerises in benzene. What will be the vapour pressure of a solution containing 61 g of benzoic acid per 500 g benzene when the vapour pressure of pure benzene at the temperature of experiment is 66.6 torr.
ii. What would have been the vapour pressure in the absence of dimerisation?
iii. Derive a relationship between mole fraction and vapour pressure of a component of an ideal solution in the liquid phase and vapour phase.

## OR

Two students use same stock solution of $\mathrm{ZnSO}_{4}$ and a solution of $\mathrm{CuSO}_{4}$. The e.m.f. of one cell is 0.03 V higher than the other. The concetration of $\mathrm{CuSO}_{4}$ in the cells with higher e.m.f. value is 0.5 M . Find out the concentration of $\mathrm{CuSO}_{4}$ in the other cell. (2.303 RT/F $=0.06$ )

## SECTION E-CASE BASED QUESTIONS

18. Read the text and answer the questions

Fuel cells convert the energy produced during the combustion of fuels directly into electrical energy. Probably the most successful fuel cell so far is a hydrogen-oxygen fuel cell, which has been used in spacecraft. The electrodes consist of porous screens of titanium coated with a layer of a platinum catalyst. Concentrated KOH or NaOH solution is placed between the electrodes to serve as the electrolyte. Hydrogen and oxygen gases are bubbled through the porous electrodes into the electrolyte solution.
The following electrode reaction occur:
At anode : $2 \mathrm{H}_{2}(\mathrm{~g})+4 \mathrm{OH}^{-}(\mathrm{aq}) \Rightarrow 4 \mathrm{HO}(\mathrm{l})+4 \mathrm{e}^{-}$
At cathode : $\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+4 \mathrm{e}^{-} \Rightarrow 4 \mathrm{OH}^{-}(\mathrm{aq})$
Overall reaction : $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
In this cell, the gaseous materials are consumed and continuously $y_{\nu}{ }^{\prime}$ supplied. The thermodynamic properties of fuel cell reaction at $25^{\circ} \mathrm{C}$ are:
$\Delta H^{\circ}=-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta G^{\circ}=-237.2 \mathrm{~kJ} \mathrm{~mol}^{-1}, E^{\circ}=1.23 \mathrm{~V}$
i. What is the value of $\Delta S^{\circ}$ for the fuel cell reaction at $25^{\circ} C$ ?
ii. If the potential of the half cell reaction at cathode is $E^{\circ}=0.41$, then what is the value of $E^{\circ}$ for the half cell reaction at the anode?
iii. If the concentrations of $\mathrm{OH}^{-}$ions in the cell are doubled then what would happen to the cell potential?
iv. Calculate the thermodynamic efficiency of $\mathrm{H}_{2}-\mathrm{O}_{2}$ fuel cell
[Hint : $\frac{\Delta G}{\Delta H}=\frac{\Delta F E}{\Delta H}$ ]
OR
v. The amount of a substance deposited by the passage by 1 amp of current for 1 sound. This is equivalent to what?

